
A State-Machine Approach to
Disambiguating Supercomputer Event Logs

Jon Stearley, Robert Ballance, Lara Bauman
Sandia National Laboratories1

{jrstear,raballa,lebauma}@sandia.gov

Abstract—Supercomputer components are inherently stateful
and interdependent, so accurate assessment of an event on one
component often requires knowledge of previous events on that
component or others. Administrators who daily monitor and
interact with the system generally possess sufficient operational
context to accurately interpret events, but researchers with only
historical logs are at risk for incorrect conclusions. To address this
risk, we present a state-machine approach for tracing context in
event logs, a flexible implementation in Splunk, and an example
of its use to disambiguate a frequently occurring event type on
an extreme-scale supercomputer. Specifically, of 70,126 heartbeat
stop events over three months, we identify only 2% as indicating
failures.

I. INTRODUCTION AND RELATED WORK

System logs are often the first place system administrators
turn when trying to determine the cause of problems in
supercomputers. They are also often studied by researchers
to understand failure modes and rates of existing systems,
towards designing methods to overcome resilience concerns
of future systems. Concerns are rising due to socket counts
and memory size increasing faster than socket reliability and
I/O rates. Components generate event logs, some indicating
benign events and others malignant ones, such as memory
errors, spurious kernel panics, and the like. The reliability
significance a kernel panic during system testing versus one
during production operation are very different. The need for
such context was described in a study of logs from five
supercomputers [1], but significant advances on this front are
not apparent in published literature. Instead, studies of event
logs mention no consideration of the operational status of the
hosts that generated them.

It is widely recognized that a single fault may result in many
event messages. The most common approach to determining
fault rates from event data is to coalesce events based on
their proximity in time, particularly when multiple hosts emit
warning messages simultaneously. Approaches include fixed-
size sliding time windows [2], dynamic window sizing [3],
and validity comparisons [4]. Tarate and others [5] calculate
reliability metrics based on coalesced logs. Many studies
analyze raw logs collected over months or years [6], during
which time scheduled maintenance almost certainly occurred,
but no mention is made of removing innocuous events (such

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000. This document’s Sandia identifier is
SAND2012-2144C.

as reboots during scheduled maintenance) from the data. Our
results show that such consideration can dramatically affect
event counts, and thus subsequent reliability metrics.

Several researchers have applied state-machine models to
the analysis of event logs. Song used three states (up, down,
warm) in a Markov model of system availability, and applied it
to logs from the “White” supercomputer [7]. A state machine
was also applied to Hadoop logs for the purpose of debugging
programs based on anomalous time periods between state
transitions [8]. These studies use small models for very specific
purposes, and do not address operations context such as
periods of scheduled maintenance.

It is our opinion that the calculation of reliability metrics
based on individual log messages - in the absence of op-
erational context - is prone to error at least, and “absurd”
at worst [1]. This paper describes a framework to track and
apply relevant context. In the next Section we present a set of
states which we believe meaningfully describe the operational
states of components in a variety of supercomputers. Then in
Sections III and IV we describe state transition rules and a
flexible state machine implementation built using the Splunk
log analysis software package. Finally in Section V we provide
an example of using the machinery to disambiguate an event
type on a Cray XE6 system containing over 9,000 hosts.

II. STATE MACHINE DEFINITION

The state hierarchy diagram proposed in [1] provides a
framework to categorize time throughout a system’s lifetime.
However, we believe that three of the proposed states cover
the majority of time and significance. In discussions among
Sandia, Lawrence Livermore, and Los Alamos National Lab-
oratory staff, there was consensus that three states cover the
majority of time and are of greatest interest. From production
users’ perspective, a system is either available for their use
or not. Unavailability is either due to scheduled reasons (such
as maintenance or upgrade), or unscheduled (such as system
failures). We thus target three categories of time: Production
Uptime, Scheduled Downtime, and Unscheduled Downtime.
Knowledge of this category for all components over time en-
ables accurate calculation of component and aggregate system
reliability metrics [9].

While these categories are useful, they are a gross sim-
plification of actual component states in supercomputers. We
thus sought to define a minimum number of finer-grained
states which are practical for both capacity and capability high



Up Suspect

SchedDownSoftDownHardDown

Unknown

start

Production Uptime

Unscheduled Downtime Scheduled Downtime

Fig. 1. Each component is in one operational state at any time (indicated
by ovals), which group into categories (e.g. Production Uptime). Unknown
is used when there is insufficient information to assign a different state to
components. Red arrows indicate state transitions which we consider to be
“failures”, and green indicates “repairs”.

performance computing (HPC) systems (e.g. clusters which
run many small jobs, versus massively parallel “big-iron”
system which run a small number of large jobs). We now
describe these states, which are shown in Figure 1, and then
address details on transitions among them in Section III. While
our long-term intent is to track the state of all component types
(such as CPUs, network cables, switches, disks, etc), this paper
focuses on individual computers only, which we refer to as
“hosts”.

A. Production Uptime

When all evidence suggests that a host is working properly,
we say it is an Up state. It must be powered on, booted, and
either running a user job or considered by the scheduler as
available to run a job. When there is evidence that the host may
be unhealthy, but not enough to conclude that it is unusable,
we say it is in a Suspect state. It may or may not be running
a job. Schedulers do not kill jobs on such hosts, but will not
start new jobs on them either. It is appropriate for schedulers
to be conservative in this respect - the authors have observed
entire queues of jobs be quickly emptied onto failed nodes
(job start, fail, iterate). When this occurs, all jobs fail, users
clean up and resubmit, and system administrators apologize.
On the other hand, incorrectly setting hosts as Suspect can lead
to inappropriate delays in running jobs (which users definitely
take notice of as well).

MOAB and SLURM are widely used software packages
which schedule jobs and allocate nodes. Capability-class sys-
tems (such as Cray XE6) tend to have additional software for
monitoring component states. Each of these software elements
have their own notion and terminology for host state, which are
compared in Table I. MOAB is a job scheduler, so “Down”
from its perspective means that a host is not scheduleable,
meaning that a new job should not be started on it. SLURM
uses the term “Draining” for hosts already running a job,
but are Suspect and should not receive new jobs. Our use of
Suspect matches Cray’s use.

B. Scheduled Downtime

Maintenance is inevitable - nothing lasts forever. It is not
unusual or unacceptable for HPC hosts and complete systems

Operational State SLURM MOAB CRAY
Up Up Up Up
Suspect Draining Down Suspect
SoftDown Drained, Drained* Down Admindown
HardDown Draining*, Down Down Down
SchedDown (not tracked as a distinct state)

TABLE I
A MAPPING OF OUR OPERATIONAL STATE NAMES TO SLURM, MOAB,

AND CRAY PERSPECTIVES OF HOST STATE.

to periodically be set aside for maintenance, upgrade, testing,
and the like. Since system administrators are unavoidably in-
volved in such activities, they interpret event logs during such
periods with that in mind. If a new software release is being
tested, new and interesting failure modes may occur, but they
are easily attributed to the testing. They are simply indicators
that the software is not ready for production deployment. Hosts
may be powered on and off repeatedly in the process, but again
these are insignificant from a system reliability perspective.

A primary problem for those analyzing historical logs is
that such periods are not known to them. Monitoring nodes
do not know why host operating systems stop, just that they
did. Permanent records of Scheduled Downtime may exist in
archived emails, spreadsheets, text files, or databases, but this
is site specific. Furthermore, not all sites keep detailed records.
The precision of records also varies - did the Scheduled
Downtime start at precisely at 6:00 AM, or just sometime in
the first half of the 6AM hour?

In order to get such events into the logs, the practice at
our site is for administrators to use a MOAB “reservation”
upon unitiating Scheduled Downtime. The reservation must
also follow a consistent naming convention (such as Pre-
ventativeMaintenance, other examples appear in Table III).
Some sites use a similar mechanism in SLURM. The result
is that the exact start and stop times of the downtime are
permanently recorded, along with the exact list of hosts which
were reserved for the activity. This is a key enabler for the
event disambiguation described in Section V.

C. Unscheduled Downtime

“Failure is not optional - it is bundled in the software”
(Unknown attribution). The underlying sentiment in this hu-
morous quip is that failure is also inevitable. From the user
perspective, it does not matter if a host operating system
panic’d, a power supply short-circuited, cooling fan bearing
wore out, or an administrator’s shutdown command was issued
in the incorrect terminal window (“oops, I meant to do that on
the test system, not the production one”) - resources are unex-
pectedly unavailable. Event logs detail such events, but require
operational context information for accurate interpretation of
event significance.

If a host in an Up state crashes, loses power, or otherwise
suddenly becomes unexpectedly unavailable, we say it has
transitioned to a HardDown state. If a job was running on
the host at the time of transition, it is harshly terminated (e.g.
manually or automatically). In contrast, if a graceful transition
to unexpectedly unavailable occurs, we say it is in a SoftDown
state. An example of this would be a host running a job, and



All Messages
Messages
of Interest

Possible
State-Changes

Actual
State-Changes

Alerts

Fig. 2. Of all message types, only a portion of them are of interest to
system administrators and regularly reviewed in raw or nightly summaries.
The subset matching the rules in Table II indicate possible state changes.
Administrators want active notification (e.g. via email or pager) for a very
small set of messages, for which we use Splunk’s “Alert” mechanism.

either automatically or manually set to Suspect due to some
symptom. The job is allowed to complete normally (minutes
or hours later), and then the host is automatically transitioned
to SoftDown, awaiting administrator investigation.

Returning to Table I, our SoftDown matches Cray’s “Ad-
mindown” - the host is not running a job nor available for
new jobs (“Down” in MOAB). SLURM refers to this state as
“Drained”. If a host is no longer communicating with SLURM
it appends an asterisk “*” to the label. So “Drained*” indicates
a host which was draining, then the job ended, and now it is
not communicating. If instead the host was draining, and then
it suddenly stopped communicating, SLURM will identify it
as “Draining*”, meaning that a job was killed in the process.
If a host was not running a job and stopped communicating,
SLURM refers to it as simply “Down”.

The meaning of “up” and “down” depends on perspective,
be it software or person - a user and administrator can mean
quite different things by saying “the host is down.” We have
attempted to map SLURM, MOAB, and Cray perspectives
to a minimal but sufficient set of reasonably intuitive and
unambiguous operational state names.

III. STATE TRANSITION RULES

An integral part of our state machine is the creation of rules
that define possible state transistions based on information
from administrators and message logs.

A. Messages of Interest

We notionally visualize different classes of log messages
in Figure 2. Of the many types of messages, only some
are interesting to administrators, which we creatively refer
to as “Messages of Interest” (MOI)1. MOI examples include
login failures, kernel panics, disk failures, memory failures,

1Messages that are squelched at the source therefore become “messages of
disinterest.” It’s not uncommon to discover, when debugging a problem, that
the wrong filters are being applied at the source.

filesystem errors, etc. Such events are operationally reviewed
as they occur, or in daily summary form. A very small set of
messages are of sufficient interest that administrators desire
active notification via email or pager - we refer to these simply
as “Alerts” (matching Splunk’s use of that term).

Researchers generally focus on MOI, but non-MOI mes-
sages are necessary in order to disambiguate them as actually
significant or not. For example, administrators initiating a
scheduled downtime with a MOAB reservation command
results in a MOABRSVSTARTSYS log message. This message
is generally not of interest to the administrators, but it is
critically important for historical review. Another example is
a log message indicating a job start. This happens nearly
constantly during the normal operation of the system, so
administrators do not generally review them. However, the
start of a job may be the first indicator that a host has entered
an Up state. This explains why the state change regions of
Figure 2 are not completely contained in the MOI region.

B. Creating Transistion Rules
Figure 1 shows all the possible transistions in our state

machine. Unknown is a special state. All hosts begin in
Unknown. The first matched event type for a host in Unknown
will trigger a transition to the corresponding new state, thus
Unknown is fully connected outward.

Note that SchedDown is fully connected inward, but has
a single outgoing transition to Unknown. In actuality, most
hosts are brought to a fully functional state before the end
of a scheduled downtime. However, some hosts are not, such
as those needing additional hardware repairs. Since multiple
reboots and test jobs may occur during a scheduled downtime,
it is not appropriate to count hosts as entering an Up state until
after a MOABRSVENDSYS event is observed. These correspond
to the Up group in Table II. Tracking of additional states
within SchedDown is possible (such as if the host is booted
or scheduleable), but we elected to keep the state machine as
simple as possible for this initial work. In practice, most hosts
quickly begin running jobs after MOABRSVENDSYS.

Also note that there is no transition from SoftDown to
HardDown. Once a host has gracefully entered an unsched-
uled downtime state, it is unavailable to users whether it is
rebooted or not. So (for example) it is inappropriate to tally
CRAYHEARTBEATSTOPALERT as additional failures.

A single state transition may be indicated by a variety of
messages, but messages can be corrupted or missing due to
system stress or unreliable transimission (e.g. UDP). For this
reason, we group multiple event types into state transition
rules, and trigger upon the first observed match. This is
accomplished by a logical OR of the message types shown
in Table II, as described in Section IV.

These rules were created and refined in collaboration with
system administrators, towards identifying operationally mean-
ingful state changes.

IV. IMPLEMENTATION IN SPLUNK

This section describes the design and implementation of
our state machinery. The implementation is general, allowing



New State Event Type Source Interpretation

Up

MOABJOBSTART Moab A Job is starting.
MOABSCHEDULEABLE Moab Scheduler deems the host to be available for scheduling.
CRAYBOOTED Syslog A host has completed its boot-up process.
CRAYAVAIL Cray Cray management software deems the host as available for scheduling.
CRAYHEALTHUP Syslog The “node health checker” has set a compute host to the available state, e.g.

after the host has entered a Suspect state and extensive checks were run on the
system before risking starting additional jobs on it.

Suspect
MOABUNSCHEDULEABLE Moab Scheduler deems the host to be unavailable for new jobs.
CRAYHEARTSTOPWARN Cray A host heartbeat has gone silent, indicating that the host might be dead.
CRAYSUSPECT Syslog The “node health checker” has set a compute host to suspect because the host

failed a health test.

SoftDown CRAYADMINDOWN Syslog The “node health checker” (or system administrator) has marked a host as
warranting additional attention before it should be trusted to run new jobs.

HardDown
CRAYHEARTSTOPALERT Cray A host heartbeat has gone silent for long enough that the host is considered to

be dead, or there are directly observable signs that the host has died, such as
well-known error codes in the heartbeat memory location. Cray management
software will automatically kill dependent jobs, halt scheduling, or similar
actions depending on the criticality of the declared dead host. See Table III for
an example.

KERNEL PANIC Cray A host kernel has panic’d (died). Most such events come through the Cray
logs, there are are some hosts for which kernel panics can only be seen via
syslogs.

SchedDown MOABRSVSTARTSYS Moab A system reservation has started. Typically used to designate the start of a
system maintenance period. See Table III for an example.

Unknown MOABRSVENDSYS Moab A system reservation is complete.

TABLE II
EVENT TYPES INDICATING POSSIBLE STATE TRANSITIONS.

New State Event Type Splunk syntax
example message, ... indicates truncation due to space limitation

HardDown

CRAYHEARTSTOPALERT sourcetype=cray ec heartbeat stop “considered dead”
2012-05-29 12:55:45 ec_heartbeat_stop src:::c13-1c2s1 seqnum:0x0 svc:::c13-1c2s1n1(131276)[alert node
heartbeat fault] Cause:ec_null Text:node c13-1c2s1n1 considered dead, last heartbeat 00025e67, HT cave
indicates a HT link is down, HT lockup criteria met, HT lockup reset is on, socket 0 core 0 bank 0 status
0xb600000000000185 addr 0x0000000000000400 ...

SchedDown MOABRSVSTARTSYS sourcetype=moabstats etype=rsvstart rsvid=PreventMaint.* OR rsvid=system* OR
rsvid=*-sys.*

05:24:50 1338290685:2551224 rsv PreventMaint.2 RSVSTART 1338290660 1338290660 1538290660 8894 8894
0.000000 0.000000 92,93,2,3,9212,...(every nid appears individually, we have truncated 9000+ nids here) -
RSV=%=PreventMaint.2=; Other - -

TABLE III
MORE DETAILS ON TWO EVENT TYPES OF PARTICULAR INTEREST IN THIS PAPER.

arbitrary state machines to be constructed entirely through
normal Splunk configuration layers.

Splunk-specific terms are italicized so interested readers can
efficiently find more information in Splunk documentation. We
chose to implement state tracking within the Splunk log anal-
ysis platform, because our system administrators already use
it for capture, storage, and analysis of all site HPC logs. It has
become our site tool of choice due to its range of functionality
and extensibility. Interested readers are welcome to download
our “HPC” app from http://splunkbase.splunk.com.

Figure 3 provides an overview of the app design as an
layered stack, colored to correspond with message classes
in Figure 2. Messages originate from many different sources
and are collected at a single point of observation where data
reduction and event correlation can occur. Downstream from
that observation point lies data analysis. Upstream lie the

various components, each configured to emit various messages
to be sent out for capture, storage, and analysis. Some mes-
sages are about the component where the message originates,
while others are about remotely observed components (e.g.
from monitoring devices). This distinction often results in
components being referred to in different name spaces. At the
bottom layer of Figure 3, all messages are stored in Splunk
indexes. Our convention is to use one index per HPC system,
where each system may contain thousands of hosts. Eventtypes
are used to define regular expressions which identify messages
of interest, such as Out of Memory conditions (OOM) or
Machine Check Errors (MCE). Eventtypes can also be logical
combinations of other eventtypes, and we use this to group the
set of message types which indicate possible state transitions.
As a result, a simple search for eventtype=cos * yields all
such messages within the search time window. Lookups and



Indexes hpc_SystemA hpc_SystemB ...
Eventtypes cos_HardDown-Up ...OOM
Lookups hostnames.csv ...
Custom Commands

hostlist.py
stateMachine.py

Saved Searches
Dashboards
Splunk Mechanism

JMTTIDownHosts SMTTINMTTI ...

MCE

hoststate SystemHardDownAlert ...

Example Splunk-HPC app objects

Fig. 3. An overview of Splunk-HPC’s design, depicted as a layered analysis
stack, with example objects at each layer. Colors match those in Figure 2,
indicating the class of information in example objects. The horizontal position
of objects is insignificant.

custom commands will be described below. Searches extract
messages from the indexes and optionally perform a variety
of analysis operations, and can be stored as saved searches
for repeated use. Finally, dashboards collect multiple searches
onto interactive web pages. For example, our app includes
dashboards to explore various reliability metrics, or list hosts
in a HardDown or SoftDown state. On Upon clicking a host
name, all event logs pertaining to that host within a user-
selectable time window appear in a new browser window.

A. Host Namespace Translation via Lookups

As mentioned in Section III, different log messages re-
fer to hosts using different namespaces. For instance Cray
logs typically refer to hosts by a physical address such as
c6-1c4s5n3, indicating the host in cabinet 6, row 1, chassis
4, slot 5, node 3 (node and host are generally synonyms
in HPC culture). However, when that host emits a syslog
message, it identifies itself as nid09163. MOAB refers to
hosts in nid space (node id), but writes them in “hostlist”
format. An example of this is [1-2342,4356-5542]*8,
which indicates that 8 processes were started on nids 1-2342
and 4345-5542. The Lustre filesystem uses a yet different
namespace for hosts, with names changing upon every mount
request (details are omitted due to space constraints). Splunk
lookups provide a mechanism to map between these, such
that a consistent namespace is automatically available to
higher layers in our analysis stack. It is hard to overstate the
usefulness of lookups for this and other purposes.

B. State Machinery via a Custom Command

We implemented a state machine in 190 lines of Python,
which is Splunk’s supported scripting language. A search is
executed resulting in all possible state transition messages,
Splunk adds the appropriate eventtype to each, which we have
formatted as cos_oldState-newState, ensures common
namespace via lookups, and passes them up the analysis stack
to the Python script. The script then parses each oldState
and newState, interpreting the corresponding events as
indicating a possible state transition of each message’s host.
By simply defining new eventtypes (e.g. via regular expres-
sions matching relevant messages) with cos_ as their prefix,
arbitrary state machines can be constructed.

For example, imagine that the first message seen
about host 5 is CRAYBOOTED, which matches eventtypes
cos_SoftDown-Up and cos_HardDown-Up. Since the

host was in an Unknown state, the script treats the mes-
sages as indicating a transition from Unknown to Up, and
passes that message to higher layers. Next, imagine that
a MOABJOBSTART message is observed, having eventtypes
cos_HardDown-Up and cos_SoftDown-Up. Since the
host is already in an Up state, the message does not indicate
a state transition (there is no matching eventtype with Up as
the oldState). It is therefore not passed to higher analysis
layers. The stateMachine.py custom command acts as
a filter: many messages come in as input, but only those
that actually indicate state transitions are output. The custom
command performs the set reduction from possible state-
change messages to actual state-change messages (Figure 2).

For ongoing monitoring of host states, we have configured
the hoststate saved search to run automatically every 5
minutes. This first pulls the last known state of hosts from a
summary index dedicated to this purpose, which seeds the host
states. Next it applies the state machinery to messages occuring
since the last write to the summary index, and then writes
the actual state transitions (with augmented information) into
the summary index. The contents of that index thus indicate
actual state transitions, for evaluation or use in other searches,
e.g. “show MOI of Up hosts” or the analysis in Section V.
The saved search can also be invoked manually, such as in
the aforementioned DownHosts dashboard (“which hosts are
currently Down?”).

C. Seeking Validation by Domain Knowledge Experts

No one understands the failure modes and states of a system
like the administrators who take care of it on a daily basis. If
administrators depend on our app to determine host states, the
state record will be explicitly validated. We state this a goal,
not an accomplishment. Administrators already had multiple
tools to determine host state (e.g. SLURM, MOAB, etc), so
the machinery described herein is primarily of research rather
than operational use as of this writing. This is initial work,
development and validation is ongoing.

We aim to provide multiple compelling features [10], such
that the app becomes the preferred tool to determine host
state and determine root causes of downtimes. Evidence of
progress on this front appears in our search logs: after a year
of production use, we average about 3,000 searches total per
month, by 10+ administrators across six HPC systems.

V. EVENT DISAMBIGUATION

We now apply our state machine to the disambiguation
of CRAYHEARTSTOPALERT events in a 9,000+ host Cray
XE6 supercomputer, over several months of 2012. These are
visualized in Figure 4. A CRAYHEARTSTOPALERT event
pertaining to host in a production uptime state indicates
that the software kernel on the host stopped incrementing a
well-known memory location (which is monitored by another
host). Causes for this include loss of power and kernel
panics which immediately kill any job on the host, and
may appropriately considered a “failure”. However, the event
can also occur as a result of a normal reboot by system



Mar Apr May Jun

0
20

00
40

00
60

00
80

00

2012

H
os

t N
um

be
r

Fig. 4. We visualize each CRAYHEARTSTOPALERT event with a single dot,
indicating the time of the event and the host it pertains to. Red dots indicate
HardDown state transitions, but grey dots do not - they indicate only innocu-
ous events during a SchedDown state (e.g. administrator-initiated reboots).
Regularly spaced vertical grey lines correspond to scheduled downtimes; the
red line at May 9 indicates a bad day.

administrators. Scheduled Downtimes often, but not always,
involve reboots. In the absence of MOABRSVSTARTSYS and
MOABRSVENDSYS events to indicate the start and end of
Scheduled Downtimes, researchers might look at the total
count of CRAYHEARTSTOPALERT events within small time
windows. If the count is high and if these occur at regular
intervals, the simple implication is that these correspond to
scheduled downtimes. While this is accurate to first order,
wide spread failures might be miscategorized. Such an event
occurred on May 9, visible as the vertical red line in Figure
4. In contrast, on March 20 there was a secondary reboot of
many hosts during a scheduled downtime, visible as a partial
vertical grey line to the right of the longer grey line. The
tracking of operational context decreases the ambiguity as to
which events are failures and which are not.

Also visible in Figure 4 are non-periodic events, such
as the sequence of failures on host 1833 in mid March
(short horizontal red line), and apparently randomly distributed
failures across various hosts and times. Of the 70,126 total
CRAYHEARTSTOPALERT events during this time period, only
1,784 indicated host failures (2%), and 1,708 of those were
on May 9 which could reasonably be considered a single
catastrophic system failure. This leaves 76 single host failure
events.

Plugging these differing counts into mean time to failure
equations or model-fitting analyses would yield dramatically
different results. Thorough disambiguation of logs is a pre-
requisite for the development of accurate failure metrics and
models based on historical logs.

This section provides a proof of concept of our approach,
in future publications we plan to examine additional event
types on XE6 and other architectures, and explicit validation

by administrators. Future papers will also emphasize analysis
results, including reliability metrics and failure models, rather
than the approach machinery which is the focus of this paper.

VI. CONCLUSIONS

We have presented a flexible framework for tracing opera-
tions context in event logs. The framework is not specific to the
state machine in this paper, nor supercomputer logs. We have
demonstrated the utility of using a state machine approach to
analyzing logs, specifically for the disambiguation of event
significance. In our example case, the small effort by system
administrators to demark scheduled downtimes with MOAB
reservations is essential, as it creates permanent and precise
records enabling disabmiguation. It is our hope that other sites
and researchers will see value in this practice and our state
machine approach.

ACKNOWLEDGMENTS

The authors would like to thank the following people.
Sandia HPC cluster administrators Jerry Smith, Aron Warren,
Chris Beggio, Ken Lord, Sophia Corwell, for data and discus-
sion of how to interpret it, and Cray systems architect Greg
Woodman for discussion of applying these techniques to the
XE6 platform.

REFERENCES

[1] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Proceedings of the Intl. Conf. on Dependable Systems
and Networks (DSN), 2007.

[2] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. K. Sahoo,
“Blue gene/l failure analysis and prediction models,” in Proceedings
of the Intl. Conf. on Dependable Systems and Networks (DSN),
2006. [Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
DSN.2006.18

[3] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer, “Improving
log-based field failure data analysis of multi-node computing systems,”
in Proceedings of the Intl. Conf. on Dependable Systems and Networks
(DSN). Los Alamitos, CA, USA: IEEE Computer Society, 2011.

[4] C. D. Martino, M. Cinque, and D. Cotroneo, “Assessing time coales-
cence techniques for the analysis of supercomputer logs,” in Proceedings
of the Intl. Conf. on Dependable Systems and Networks (DSN), 2012.

[5] N. Taerat, N. Naksinehaboon, C. Chandler, J. Elliott, C. Leangsuksun,
G. Ostrouchov, S. Scott, and C. Engelmann, “Blue gene/l log analysis
and time to interrupt estimation,” in Availability, Reliability and Security,
2009. ARES ’09. International Conference on, 2009.

[6] B. Schroeder and G. Gibson, “The computer failure data repository,”
2007, online at http://cfdr.usenix.org/.

[7] H. Song, C. Leangsuksun, and R. Nassar, “Availability modeling
and analysis on high performance cluster computing systems,” in
Proceedings of the First International Conference on Availability,
Reliability and Security, ser. ARES ’06. Washington, DC, USA: IEEE
Computer Society, 2006. [Online]. Available: http://dx.doi.org/10.1109/
ARES.2006.37

[8] J. Tan, X. Pan, S. Kavulya, R. G, and P. Narasimhan, “Salsa: Analyzing
logs as state machines,” in Proceedings of the First USENIX Workshop
on the Analysis of System Logs, 2008.

[9] J. Stearley, “Defining and measuring supercomputer Reliability,
Availability, and Serviceability (RAS),” in Proceedings of
the 2005 Linux Clusters Institute Conference, 2005, see
http://www.cs.sandia.gov/˜jrstear/ras.

[10] J. Stearley, S. Corwell, and K. Lord, “Bridging the gaps: joining
information sources with splunk,” in Proceedings of the 2010 workshop
on Managing systems via log analysis and machine learning techniques,
ser. SLAML’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 8–8. [Online]. Available: http://dl.acm.org/citation.cfm?id=1928991.
1929003


